Notation

"•"	event (in probability)
$\{\cdots\}$	set
.	absolute value of a number, or cardinality (number of elements) of a set, or determinant of a matrix
$\ \cdot\ ^2$	square of the norm; sum of the squared components of a
	vector
[·]	floor; largest integer which is not larger than the argument
[a, b]	the interval of real numbers from a to b
[[·]]	evaluates to 1 if argument is true, and to 0 if it is false
∇	gradient operator, e.g., ∇E_{in} (gradient of $E_{in}(\mathbf{w})$ with re-
	spect to \mathbf{w})
$(\cdot)^{-1}$	inverse
$(\cdot)^{\dagger}$	pseudo-inverse
$(\cdot)^{\mathrm{T}}$	transpose (columns become rows and vice versa)
$\left(\begin{array}{c}N\\k\end{array}\right)$	number of ways to choose k objects from N distinct objects (equals $\frac{N!}{N!}$ where '!' is the factorial)
$A \setminus B$	the set A with the elements from set B removed
0	zero vector: a column vector whose components are all zeros
$\{1\} \times \mathbb{R}^d$	d-dimensional Euclidean space with an added 'zeroth coordinate' fixed to 1
ϵ	tolerance in approximating a target
δ	bound on the probability of exceeding ϵ (the approximation tolerance)
η	learning rate (step size in iterative learning, e.g., in stochas- tic gradient descent)
λ	regularization parameter
λ_C	regularization parameter corresponding to weight budget
-	C
Ω	penalty for model complexity; either a bound on general-
	ization error, or a regularization term
θ	logistic function $\theta(s) = e^s/(1+e^s)$
Φ	feature transform, $\mathbf{z} = \Phi(\mathbf{x})$
$\Phi_{ ext{Q}}$	Qth-order polynomial transform

ϕ	a coordinate in the feature transform Φ , $z_i = \phi_i(\mathbf{x})$
μ	probability of a binary outcome
ν	fraction of a binary outcome in a sample
σ^2	variance of noise
\mathcal{A}	learning algorithm
$\operatorname{argmin}_{a}(\cdot)$	the value of a at which the minimum of the argument is
	achieved
\mathcal{B}	an event (in probability), usually 'bad' event
b	the bias term in a linear combination of inputs, also called
	w_0
bias	the bias term in bias-variance decomposition
B(N,k)	maximum number of dichotomies on N points with a break
	point k
C	bound on the size of weights in the soft order constraint
d	dimensionality of the input space $\mathcal{X} = \mathbb{R}^d$ or $\mathcal{X} = \{1\} \times \mathbb{R}^d$
$ ilde{d}$	dimensionality of the transformed space \mathcal{Z}
$d_{ ext{vc}},\! d_{ ext{vc}}(\mathcal{H})$	VC dimension of hypothesis set \mathcal{H}
\mathcal{D}	data set $\mathcal{D} = (\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)$; technically not a set,
	but a vector of elements (\mathbf{x}_n, y_n) . \mathcal{D} is often the training
	set, but sometimes split into training and validation/test
	sets.
$\mathcal{D}_{ ext{train}}$	subset of \mathcal{D} used for training when a validation or test set
	is used
	is used.
$\mathcal{D}_{\mathrm{val}}$	validation set; subset of \mathcal{D} used for validation.
$\mathcal{D}_{\mathrm{val}} \ E(h,f)$	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f
$\mathcal{D}_{\mathrm{val}} \\ E(h,f) \\ e^x$	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f exponent of x in the natural base $e = 2.71828 \cdots$
$egin{split} \mathcal{D}_{ ext{val}}\ E(h,f)\ e^x\ \mathbf{e}(h(\mathbf{x}),f(\mathbf{x})) \end{split}$	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f exponent of x in the natural base $e = 2.71828 \cdots$ pointwise version of $E(h, f)$, e.g., $(h(\mathbf{x}) - f(\mathbf{x}))^2$
$\mathcal{D}_{\mathrm{val}}$ E(h, f) e^{x} $e(h(\mathbf{x}), f(\mathbf{x}))$ e_{n}	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f exponent of x in the natural base $e = 2.71828\cdots$ pointwise version of $E(h, f)$, e.g., $(h(\mathbf{x}) - f(\mathbf{x}))^2$ leave-one-out error on example n when this n th example is
$\mathcal{D}_{\mathrm{val}}$ E(h, f) e^{x} $\mathbf{e}(h(\mathbf{x}), f(\mathbf{x}))$ \mathbf{e}_{n}	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f exponent of x in the natural base $e = 2.71828\cdots$ pointwise version of $E(h, f)$, e.g., $(h(\mathbf{x}) - f(\mathbf{x}))^2$ leave-one-out error on example n when this n th example is excluded in training [cross validation]
$\mathcal{D}_{\text{val}} \\ E(h, f) \\ e^{x} \\ \mathbf{e}(h(\mathbf{x}), f(\mathbf{x})) \\ \mathbf{e}_{n} \\ \mathbb{E}[\cdot] \\ \vdots$	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f exponent of x in the natural base $e = 2.71828\cdots$ pointwise version of $E(h, f)$, e.g., $(h(\mathbf{x}) - f(\mathbf{x}))^2$ leave-one-out error on example n when this n th example is excluded in training [cross validation] expected value of argument
\mathcal{D}_{val} $E(h, f)$ e^{x} $e(h(x), f(x))$ e_{n} $\mathbb{E}[\cdot]$ $\mathbb{E}_{x}[\cdot]$	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f exponent of x in the natural base $e = 2.71828\cdots$ pointwise version of $E(h, f)$, e.g., $(h(\mathbf{x}) - f(\mathbf{x}))^2$ leave-one-out error on example n when this n th example is excluded in training [cross validation] expected value of argument expected value with respect to \mathbf{x}
\mathcal{D}_{val} $E(h, f)$ e^{x} $e(h(\mathbf{x}), f(\mathbf{x}))$ e_{n} $\mathbb{E}[\cdot]$ $\mathbb{E}_{\mathbf{x}}[\cdot]$ $\mathbb{E}_{\mathbf{y}}[y]$	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f exponent of x in the natural base $e = 2.71828\cdots$ pointwise version of $E(h, f)$, e.g., $(h(\mathbf{x}) - f(\mathbf{x}))^2$ leave-one-out error on example n when this n th example is excluded in training [cross validation] expected value of argument expected value with respect to \mathbf{x} expected value of y given \mathbf{x}
\mathcal{D}_{val} $E(h, f)$ e^{x} $e(h(\mathbf{x}), f(\mathbf{x}))$ e_{n} $\mathbb{E}[\cdot]$ $\mathbb{E}_{\mathbf{x}}[\cdot]$ $\mathbb{E}[y \mathbf{x}]$ E_{aug} E_{aug} E_{aug}	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f exponent of x in the natural base $e = 2.71828\cdots$ pointwise version of $E(h, f)$, e.g., $(h(\mathbf{x}) - f(\mathbf{x}))^2$ leave-one-out error on example n when this n th example is excluded in training [cross validation] expected value of argument expected value with respect to \mathbf{x} expected value of y given \mathbf{x} augmented error (in-sample error plus regularization term)
\mathcal{D}_{val} $E(h, f)$ e^{x} $e(h(\mathbf{x}), f(\mathbf{x}))$ e_{n} $\mathbb{E}[\cdot]$ $\mathbb{E}_{\mathbf{x}}[\cdot]$ $\mathbb{E}[y \mathbf{x}]$ E_{aug} $E_{in}, E_{in}(h)$	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f exponent of x in the natural base $e = 2.71828\cdots$ pointwise version of $E(h, f)$, e.g., $(h(\mathbf{x}) - f(\mathbf{x}))^2$ leave-one-out error on example n when this n th example is excluded in training [cross validation] expected value of argument expected value of argument expected value with respect to \mathbf{x} expected value of y given \mathbf{x} augmented error (in-sample error plus regularization term) in-sample error (training error) for hypothesis h
\mathcal{D}_{val} $E(h, f)$ e^{x} $e(h(x), f(x))$ e_{n} $\mathbb{E}[\cdot]$ $\mathbb{E}_{x}[\cdot]$ $\mathbb{E}[y x]$ E_{aug} $E_{in}, E_{in}(h)$ E_{cv} $E_{aug}(h)$	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f exponent of x in the natural base $e = 2.71828\cdots$ pointwise version of $E(h, f)$, e.g., $(h(\mathbf{x}) - f(\mathbf{x}))^2$ leave-one-out error on example n when this n th example is excluded in training [cross validation] expected value of argument expected value with respect to \mathbf{x} expected value of y given \mathbf{x} augmented error (in-sample error plus regularization term) in-sample error (training error) for hypothesis h cross validation error
\mathcal{D}_{val} $E(h, f)$ e^{x} $e(h(\mathbf{x}), f(\mathbf{x}))$ e_{n} $\mathbb{E}[\cdot]$ $\mathbb{E}_{\mathbf{x}}[\cdot]$ $\mathbb{E}[y \mathbf{x}]$ E_{aug} $E_{in}, E_{in}(h)$ E_{cv} $E_{out}, E_{out}(h)$	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f exponent of x in the natural base $e = 2.71828\cdots$ pointwise version of $E(h, f)$, e.g., $(h(\mathbf{x}) - f(\mathbf{x}))^2$ leave-one-out error on example n when this n th example is excluded in training [cross validation] expected value of argument expected value of argument expected value with respect to \mathbf{x} expected value of y given \mathbf{x} augmented error (in-sample error plus regularization term) in-sample error (training error) for hypothesis h cross validation error out-of-sample error for hypothesis h
$ \begin{aligned} & \mathcal{D}_{\text{val}} \\ & E(h, f) \\ & e^{x} \\ & \mathbf{e}(h(\mathbf{x}), f(\mathbf{x})) \\ & \mathbf{e}_{n} \\ & \mathbb{E}[\cdot] \\ & \mathbb{E}_{\mathbf{x}}[\cdot] \\ & \mathbb{E}_{[y] \mathbf{x}]} \\ & E_{\text{aug}} \\ & E_{\text{in}}, E_{\text{in}}(h) \\ & E_{\text{cv}} \\ & E_{\text{out}}, E_{\text{out}}(h) \end{aligned} $	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f exponent of x in the natural base $e = 2.71828\cdots$ pointwise version of $E(h, f)$, e.g., $(h(\mathbf{x}) - f(\mathbf{x}))^2$ leave-one-out error on example n when this n th example is excluded in training [cross validation] expected value of argument expected value of argument expected value of y given \mathbf{x} augmented error (in-sample error plus regularization term) in-sample error (training error) for hypothesis h cross validation error out-of-sample error for hypothesis h out-of-sample error when \mathcal{D} is used for training
$ \begin{aligned} & \mathcal{D}_{\text{val}} \\ & E(h, f) \\ & e^{x} \\ & \mathbf{e}(h(\mathbf{x}), f(\mathbf{x})) \\ & \mathbf{e}_{n} \\ & \mathbb{E}[\cdot] \\ & \mathbb{E}_{\mathbf{x}}[\cdot] \\ & \mathbb{E}[y \mathbf{x}] \\ & E_{\text{aug}} \\ & E_{\text{in}}, E_{\text{in}}(h) \\ & E_{\text{cv}} \\ & E_{\text{out}}, E_{\text{out}}(h) \\ & E_{\text{out}} \\ & E_{\text{out}} \\ & E_{\text{out}} \end{aligned} $	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f exponent of x in the natural base $e = 2.71828\cdots$ pointwise version of $E(h, f)$, e.g., $(h(\mathbf{x}) - f(\mathbf{x}))^2$ leave-one-out error on example n when this n th example is excluded in training [cross validation] expected value of argument expected value of argument expected value of y given \mathbf{x} augmented error (in-sample error plus regularization term) in-sample error (training error) for hypothesis h cross validation error out-of-sample error for hypothesis h out-of-sample error when \mathcal{D} is used for training expected out-of-sample error
\mathcal{D}_{val} $E(h, f)$ e^{x} $e(h(x), f(x))$ e_{n} $\mathbb{E}[\cdot]$ $\mathbb{E}_{x}[\cdot]$ $\mathbb{E}[y x]$ E_{aug} $E_{in}, E_{in}(h)$ E_{cv} $E_{out}, E_{out}(h)$ E_{out} E_{val} E_{val}	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f exponent of x in the natural base $e = 2.71828\cdots$ pointwise version of $E(h, f)$, e.g., $(h(\mathbf{x}) - f(\mathbf{x}))^2$ leave-one-out error on example n when this n th example is excluded in training [cross validation] expected value of argument expected value of argument expected value of y given \mathbf{x} augmented error (in-sample error plus regularization term) in-sample error (training error) for hypothesis h cross validation error out-of-sample error for hypothesis h out-of-sample error when \mathcal{D} is used for training expected out-of-sample error
$ \begin{array}{l} \mathcal{D}_{\mathrm{val}} \\ E(h,f) \\ e^{x} \\ \mathbf{e}(h(\mathbf{x}),f(\mathbf{x})) \\ \mathbf{e}_{n} \end{array} \\ \\ \mathbb{E}[\cdot] \\ \mathbb{E}_{\mathbf{x}}[\cdot] \\ \mathbb{E}_{[y \mathbf{x}]} \\ E_{\mathrm{aug}} \\ E_{\mathrm{in}}, E_{\mathrm{in}}(h) \\ E_{\mathrm{cv}} \\ E_{\mathrm{out}}, E_{\mathrm{out}}(h) \\ E_{\mathrm{out}}^{D} \\ E_{\mathrm{out}} \\ E_{\mathrm{out}} \\ E_{\mathrm{val}} \\ E_{\mathrm{test}} \\ e \end{array} $	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f exponent of x in the natural base $e = 2.71828\cdots$ pointwise version of $E(h, f)$, e.g., $(h(\mathbf{x}) - f(\mathbf{x}))^2$ leave-one-out error on example n when this n th example is excluded in training [cross validation] expected value of argument expected value of argument expected value of y given \mathbf{x} augmented error (in-sample error plus regularization term) in-sample error (training error) for hypothesis h cross validation error out-of-sample error for hypothesis h out-of-sample error when \mathcal{D} is used for training expected out-of-sample error validation error
\mathcal{D}_{val} $E(h, f)$ e^{x} $e(h(\mathbf{x}), f(\mathbf{x}))$ e_{n} $\mathbb{E}[\cdot]$ $\mathbb{E}_{\mathbf{x}}[\cdot]$ $\mathbb{E}[y \mathbf{x}]$ E_{aug} $E_{in}, E_{in}(h)$ E_{cv} $E_{out}, E_{out}(h)$ $E_{out}^{\mathcal{D}}$ E_{out} E_{val} E_{test} f	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f exponent of x in the natural base $e = 2.71828\cdots$ pointwise version of $E(h, f)$, e.g., $(h(\mathbf{x}) - f(\mathbf{x}))^2$ leave-one-out error on example n when this n th example is excluded in training [cross validation] expected value of argument expected value of argument expected value of y given \mathbf{x} augmented error (in-sample error plus regularization term) in-sample error (training error) for hypothesis h cross validation error out-of-sample error for hypothesis h out-of-sample error when \mathcal{D} is used for training expected out-of-sample error validation error test error target function, $f: \mathcal{X} \to \mathcal{Y}$
$ \begin{array}{l} \mathcal{D}_{\mathrm{val}} \\ E(h,f) \\ e^{x} \\ \mathbf{e}(h(\mathbf{x}),f(\mathbf{x})) \\ \mathbf{e}_{n} \\ \\ \mathbb{E}[\cdot] \\ \mathbb{E}_{\mathbf{x}}[\cdot] \\ \mathbb{E}_{\mathrm{aug}} \\ E_{\mathrm{in}}, E_{\mathrm{in}}(h) \\ E_{\mathrm{cv}} \\ E_{\mathrm{out}}, E_{\mathrm{out}}(h) \\ E_{\mathrm{out}}^{\mathcal{D}} \\ E_{\mathrm{out}} \\ E_{\mathrm{val}} \\ E_{\mathrm{val}} \\ E_{\mathrm{test}} \\ f \\ g \end{array} $	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f exponent of x in the natural base $e = 2.71828\cdots$ pointwise version of $E(h, f)$, e.g., $(h(\mathbf{x}) - f(\mathbf{x}))^2$ leave-one-out error on example n when this n th example is excluded in training [cross validation] expected value of argument expected value of argument expected value of y given \mathbf{x} augmented error (in-sample error plus regularization term) in-sample error (training error) for hypothesis h cross validation error out-of-sample error for hypothesis h out-of-sample error when \mathcal{D} is used for training expected out-of-sample error validation error test error target function, $f: \mathcal{X} \to \mathcal{Y}$ final hypothesis $g \in \mathcal{H}$ selected by the learning algorithm;
$\mathcal{D}_{val} \\ E(h, f) \\ e^{x} \\ \mathbf{e}(h(\mathbf{x}), f(\mathbf{x})) \\ \mathbf{e}_{n} \\ \mathbb{E}[\cdot] \\ \mathbb{E}_{\mathbf{x}}[\cdot] \\ \mathbb{E}[y \mathbf{x}] \\ E_{aug} \\ E_{in}, E_{in}(h) \\ E_{cv} \\ E_{out}, E_{out}(h) \\ E_{out} \\ E_{out} \\ E_{val} \\ E_{test} \\ f \\ g \\ g \\ \mathcal{L}(\mathcal{D}) \\ \end{bmatrix}$	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f exponent of x in the natural base $e = 2.71828\cdots$ pointwise version of $E(h, f)$, e.g., $(h(\mathbf{x}) - f(\mathbf{x}))^2$ leave-one-out error on example n when this n th example is excluded in training [cross validation] expected value of argument expected value of argument expected value of y given \mathbf{x} augmented error (in-sample error plus regularization term) in-sample error (training error) for hypothesis h cross validation error out-of-sample error for hypothesis h out-of-sample error when \mathcal{D} is used for training expected out-of-sample error validation error test error target function, $f: \mathcal{X} \to \mathcal{Y}$ final hypothesis $g \in \mathcal{H}$ selected by the learning algorithm; $g: \mathcal{X} \to \mathcal{Y}$
$\mathcal{D}_{val} \\ E(h, f) \\ e^{x} \\ \mathbf{e}(h(\mathbf{x}), f(\mathbf{x})) \\ \mathbf{e}_{n} \\ \mathbb{E}[\cdot] \\ \mathbb{E}_{\mathbf{x}}[\cdot] \\ \mathbb{E}_{aug} \\ E_{in}, E_{in}(h) \\ E_{cv} \\ E_{out}, E_{out}(h) \\ E_{out} \\ E_{out} \\ E_{val} \\ E_{test} \\ f \\ g \\ g^{(\mathcal{D})} \\ \bar{z} \\ \end{bmatrix}$	validation set; subset of \mathcal{D} used for validation. error measure between hypothesis h and target function f exponent of x in the natural base $e = 2.71828\cdots$ pointwise version of $E(h, f)$, e.g., $(h(\mathbf{x}) - f(\mathbf{x}))^2$ leave-one-out error on example n when this n th example is excluded in training [cross validation] expected value of argument expected value of argument expected value of y given \mathbf{x} augmented error (in-sample error plus regularization term) in-sample error (training error) for hypothesis h cross validation error out-of-sample error for hypothesis h out-of-sample error when \mathcal{D} is used for training expected out-of-sample error validation error test error target function, $f: \mathcal{X} \to \mathcal{Y}$ final hypothesis $g \in \mathcal{H}$ selected by the learning algorithm; $g: \mathcal{X} \to \mathcal{Y}$

<u>g</u>	final hypothesis when trained using \mathcal{D} minus some points
g	gradient, e.g., $\mathbf{g} = \nabla E_{\text{in}}$
\overline{h}	a hypothesis $h \in \mathcal{H}; h: \mathcal{X} \to \mathcal{Y}$
$ ilde{h}$	a hypothesis in transformed space \mathcal{Z}
${\cal H}$	hypothesis set
\mathcal{H}_{Φ}	hypothesis set that corresponds to perceptrons in Φ -
-	transformed space
$\mathcal{H}(C)$	restricted hypothesis set by weight budget C [soft order
()	constraint]
$\mathcal{H}(\mathbf{x}_1,\ldots,\mathbf{x}_N)$	dichotomies (patterns of ± 1) generated by \mathcal{H} on the points
	$\mathbf{x}_1, \cdots, \mathbf{x}_N$
Н	The hat matrix [linear regression]
Ι	identity matrix; square matrix whose diagonal elements are
	1 and off-diagonal elements are 0
K	size of validation set
L_{a}	qth-order Legendre polynomial
ln	logarithm in base e
\log_2	logarithm in base 2
M^{2}	number of hypotheses
$m_{\mathcal{H}}(N)$	the growth function; maximum number of dichotomies gen-
	erated by \mathcal{H} on any N points
$\max(\cdot, \cdot)$	maximum of the two arguments
N	number of examples (size of \mathcal{D})
$o(\cdot)$	absolute value of this term is asymptotically negligible com-
	pared to the argument
$O(\cdot)$	absolute value of this term is asymptotically smaller than
	a constant multiple of the argument
$P(\mathbf{x})$	(marginal) probability or probability density of ${f x}$
$P(y \mid \mathbf{x})$	conditional probability or probability density of y given \mathbf{x}
$P(\mathbf{x}, y)$	joint probability or probability density of \mathbf{x} and y
$\mathbb{P}[\cdot]$	probability of an event
Q	order of polynomial transform
Q_f	complexity of f (order of polynomial defining f)
\mathbb{R}_{-}	the set of real numbers
\mathbb{R}^{d}	d-dimensional Euclidean space
S	signal $s = \mathbf{w}^{T} \mathbf{x} = \sum_{i} w_i x_i$ (<i>i</i> goes from 0 to <i>d</i> or 1 to <i>d</i>
	depending on whether x has the $x_0 = 1$ coordinate or not)
$\operatorname{sign}(\cdot)$	sign function, returning $+1$ for positive and -1 for negative
$\sup_{a}(.)$	supremum; smallest value that is \geq the argument for all a
T	number of iterations, number of epochs
t	iteration number or epoch number
$\tanh(\cdot)$	hyperbolic tangent function; $tanh(s) = (e^s - e^{-s})/(e^s + e^{-s})$
$\operatorname{trace}(\cdot)$	trace of square matrix (sum of diagonal elements)
V	number of subsets in V-fold cross validation $(V \times K = N)$
v	direction in gradient descent (not necessarily a unit vector)

$\hat{\mathbf{v}}$	unit vector version of \mathbf{v} [gradient descent]
var	the variance term in bias-variance decomposition
w	weight vector (column vector)
$\tilde{\mathbf{w}}$	weight vector in transformed space \mathcal{Z}
$\hat{\mathbf{w}}$	selected weight vector [pocket algorithm]
\mathbf{w}^*	weight vector that separates the data
$\mathbf{w}_{\mathrm{lin}}$	solution weight vector to linear regression
$\mathbf{w}_{\mathrm{reg}}$	regularized solution to linear regression with weight decay
$\mathbf{W}_{\mathrm{PLA}}$	solution weight vector of perceptron learning algorithm
w_0	added coordinate in weight vector ${\bf w}$ to represent bias b
x	the input $\mathbf{x} \in \mathcal{X}$. Often a column vector $\mathbf{x} \in \mathbb{R}^d$ or $\mathbf{x} \in$
	$\{1\} \times \mathbb{R}^d$. x is used if input is scalar.
x_0	added coordinate to \mathbf{x} , fixed at $x_0 = 1$ to absorb the bias
	term in linear expressions
X	input space whose elements are $\mathbf{x} \in \mathcal{X}$
Х	matrix whose rows are the data inputs \mathbf{x}_n [linear regression]
XOR	exclusive OR function (returns 1 if the number of 1's in its
	input is odd)
y	the output $y \in \mathcal{Y}$
У	column vector whose components are the data set outputs
	y_n [linear regression]
$\hat{\mathbf{y}}$	estimate of \mathbf{y} [linear regression]
\mathcal{Y}	output space whose elements are $y \in \mathcal{Y}$
\mathcal{Z}	transformed input space whose elements are $\mathbf{z} = \Phi(\mathbf{x})$
Z	matrix whose rows are the transformed inputs $\mathbf{z}_n = \Phi(\mathbf{x}_n)$
	[linear regression]