Notation

" . "	event (in probability)		
$\{\cdots\}$	set		
\| $\cdot 1$	absolute value of a number, or cardinality (number of elements) of a set, or determinant of a matrix		
$\\|\cdot\\|^{2}$	square of the norm; sum of the squared components of a vector		
[.]	floor; largest integer which is not larger than the argument		
$[a, b]$	the interval of real numbers from a to b		
【.】	evaluates to 1 if argument is true, and to 0 if it is false		
∇	gradient operator, e.g., $\nabla E_{\text {in }}$ (gradient of $E_{\text {in }}(\mathbf{w})$ with respect to w)		
(.) ${ }^{-1}$	inverse		
$(\cdot)^{\dagger}$	pseudo-inverse		
$(\cdot)^{\mathrm{T}}$	transpose (columns become rows and vice versa)		
$\binom{N}{k}$	number of ways to choose k objects from N distinct objects (equals $\frac{N!}{(N-k)!k!}$ where '!' is the factorial)		
$A \backslash B$	the set A with the elements from set B removed		
0	zero vector; a column vector whose components are all zeros		
$\{1\} \times \mathbb{R}^{d}$	d-dimensional Euclidean space with an added 'zeroth coordinate' fixed to 1		
ϵ	tolerance in approximating a target		
δ	bound on the probability of exceeding ϵ (the approximation tolerance)		
η	learning rate (step size in iterative learning, e.g., in stochastic gradient descent)		
λ	regularization parameter		
λ_{C}	regularization parameter corresponding to weight budget C		
Ω	penalty for model complexity; either a bound on generalization error, or a regularization term		
θ	logistic function $\theta(s)=e^{s} /\left(1+e^{s}\right)$		
Φ	feature transform, $\mathbf{z}=\Phi(\mathbf{x})$		
Φ_{Q}	Q th-order polynomial transform		

ϕ	a coordinate in the feature transform $\Phi, z_{i}=\phi_{i}(\mathbf{x})$
μ	probability of a binary outcome
ν	fraction of a binary outcome in a sample
σ^{2}	variance of noise
\mathcal{A}	learning algorithm
$\operatorname{argmin}_{a}(\cdot)$	the value of a at which the minimum of the argument is achieved
\mathcal{B}	an event (in probability), usually 'bad' event
b	the bias term in a linear combination of inputs, also called
	w_{0}
bias	the bias term in bias-variance decomposition
$B(N, k)$	maximum number of dichotomies on N points with a break point k
C	bound on the size of weights in the soft order constraint
${ }_{\sim}^{\text {d }}$	dimensionality of the input space $\mathcal{X}=\mathbb{R}^{d}$ or $\mathcal{X}=\{1\} \times \mathbb{R}^{d}$
\tilde{d}	dimensionality of the transformed space \mathcal{Z}
$d_{\mathrm{vC}}, d_{\mathrm{vc}}(\mathcal{H})$	VC dimension of hypothesis set \mathcal{H}
D	data set $\mathcal{D}=\left(\mathbf{x}_{1}, y_{1}\right), \cdots,\left(\mathbf{x}_{N}, y_{N}\right)$; technically not a set, but a vector of elements $\left(\mathbf{x}_{n}, y_{n}\right)$. \mathcal{D} is often the training set, but sometimes split into training and validation/test sets.
$\mathcal{D}_{\text {train }}$	subset of \mathcal{D} used for training when a validation or test set is used.
$\mathcal{D}_{\text {val }}$	validation set; subset of \mathcal{D} used for validation.
$E(h, f)$	error measure between hypothesis h and target function f
e^{x}	exponent of x in the natural base $e=2.71828$.
$\mathrm{e}(h(\mathbf{x}), f(\mathbf{x}))$	pointwise version of $E(h, f)$, e.g., $(h(\mathbf{x})-f(\mathbf{x}))^{2}$
e_{n}	leave-one-out error on example n when this nth example is excluded in training [cross validation]
$\mathbb{E}[\cdot]$	expected value of argument
$\mathbb{E}_{\mathbf{x}}[\cdot]$	expected value with respect to \mathbf{x}
$\mathbb{E}[y \mid \mathbf{x}]$	expected value of y given \mathbf{x}
$E_{\text {aug }}$	augmented error (in-sample error plus regularization term)
$E_{\text {in }}, E_{\text {in }}(h)$	in-sample error (training error) for hypothesis h
$E_{\text {cv }}$	cross validation error
$E_{\text {out }}, E_{\text {out }}(h)$	out-of-sample error for hypothesis h
$E_{\text {out }}^{\text {D }}$	out-of-sample error when \mathcal{D} is used for training
$\bar{E}_{\text {out }}$	expected out-of-sample error
$E_{\text {val }}$	validation error
$E_{\text {test }}$	test error
f	target function, $f: \mathcal{X} \rightarrow \mathcal{Y}$
g	final hypothesis $g \in \mathcal{H}$ selected by the learning algorithm; $g: \mathcal{X} \rightarrow \mathcal{Y}$
$g^{(\mathcal{D})}$	final hypothesis when the training set is \mathcal{D}
\bar{g}	average final hypothesis [bias-variance analysis]

g^{-}	final hypothesis when trained using \mathcal{D} minus some points
g	gradient, e.g., $\mathbf{g}=\nabla E_{\text {in }}$
h	a hypothesis $h \in \mathcal{H} ; h: \mathcal{X} \rightarrow \mathcal{Y}$
\tilde{h}	a hypothesis in transformed space \mathcal{Z}
\mathcal{H}	hypothesis set
$\mathcal{H}_{\text {I }}$	hypothesis set that corresponds to perceptrons in Φ transformed space
$\mathcal{H}(C)$	restricted hypothesis set by weight budget C [soft order constraint]
$\mathcal{H}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right)$	dichotomies (patterns of ± 1) generated by \mathcal{H} on the points $\mathbf{x}_{1}, \cdots, \mathbf{x}_{N}$
H	The hat matrix [linear regression]
I	identity matrix; square matrix whose diagonal elements are 1 and off-diagonal elements are 0
K	size of validation set
L_{q}	q th-order Legendre polynomial
\ln	logarithm in base e
$\log _{2}$	logarithm in base 2
M	number of hypotheses
$m_{\mathcal{H}}(N)$	the growth function; maximum number of dichotomies generated by \mathcal{H} on any N points
$\max (\cdot, \cdot)$	maximum of the two arguments
N	number of examples (size of \mathcal{D})
$o(\cdot)$	absolute value of this term is asymptotically negligible compared to the argument
$O(\cdot)$	absolute value of this term is asymptotically smaller than a constant multiple of the argument
$P(\mathbf{x})$	(marginal) probability or probability density of \mathbf{x}
$P(y \mid \mathbf{x})$	conditional probability or probability density of y given \mathbf{x}
$P(\mathbf{x}, y)$	joint probability or probability density of \mathbf{x} and y
$\mathbb{P}[\cdot]$	probability of an event
Q	order of polynomial transform
Q_{f}	complexity of f (order of polynomial defining f)
R	the set of real numbers
\mathbb{R}^{d}	d-dimensional Euclidean space
s	signal $s=\mathbf{w}^{\mathrm{T}} \mathbf{x}=\sum_{i} w_{i} x_{i}$ (i goes from 0 to d or 1 to d depending on whether \mathbf{x} has the $x_{0}=1$ coordinate or not)
$\operatorname{sign}(\cdot)$	sign function, returning +1 for positive and -1 for negative
$\sup _{a}($.	supremum; smallest value that is \geq the argument for all a
T	number of iterations, number of epochs
t	iteration number or epoch number
$\tanh (\cdot)$	hyperbolic tangent function; $\tanh (s)=\left(e^{s}-e^{-s}\right) /\left(e^{s}+e^{-s}\right)$
trace(•)	trace of square matrix (sum of diagonal elements)
V	number of subsets in V-fold cross validation ($V \times K=N$)
v	direction in gradient descent (not necessarily a unit vector)

$\hat{\mathbf{v}}$	unit vector version of \mathbf{v} [gradient descent]
var	the variance term in bias-variance decomposition
w	weight vector (column vector)
w	weight vector in transformed space \mathcal{Z}
$\hat{\mathbf{w}}$	selected weight vector [pocket algorithm]
w^{*}	weight vector that separates the data
$\mathrm{w}_{\text {lin }}$	solution weight vector to linear regression
$\mathbf{w}_{\text {reg }}$	regularized solution to linear regression with weight decay
$\mathbf{w}_{\text {PLA }}$	solution weight vector of perceptron learning algorithm
w_{0}	added coordinate in weight vector \mathbf{w} to represent bias b
x	the input $\mathrm{x} \in \mathcal{X}$. Often a column vector $\mathrm{x} \in \mathbb{R}^{d}$ or $\mathbf{x} \in$ $\{1\} \times \mathbb{R}^{d} . x$ is used if input is scalar.
x_{0}	added coordinate to \mathbf{x}, fixed at $x_{0}=1$ to absorb the bias term in linear expressions
\mathcal{X}	input space whose elements are $\mathbf{x} \in \mathcal{X}$
X	matrix whose rows are the data inputs \mathbf{x}_{n} [linear regression]
XOR	exclusive OR function (returns 1 if the number of 1 's in its input is odd)
y	the output $y \in \mathcal{Y}$
y	column vector whose components are the data set outputs y_{n} [linear regression]
$\hat{\mathbf{y}}$	estimate of y [linear regression]
\mathcal{Y}	output space whose elements are $y \in \mathcal{Y}$
\mathcal{Z}	transformed input space whose elements are $\mathbf{z}=\Phi(\mathbf{x})$
Z	matrix whose rows are the transformed inputs $\mathbf{z}_{n}=\Phi\left(\mathbf{x}_{n}\right)$ [linear regression]

