Index

active learning, 181
 definition, 12
Adaline, 35, 110
approximation, 27
 versus generalization, 62–68, 106
artificial intelligence, 5
augmented error, 132, 157
axiom of non-falsifiability, 178

\[B(N, k) \]
 definition, 46
 lower bound, 69
 upper bound, 48
backgammon, 12
Bayes optimal decision theory, 10
Bayes theorem, 33
Bayesian learning, 181
bias-variance, 62–66
 average function, 63
 dependence on \(N, d \), 158
 example, 65
 impact of noise, 125
 linear models, 158–159
 linear regression, 114
 noisy target, 74
bin model, 18
 multiple bins, 22
 relationship to learning, 20
binomial distribution, 36
boosting, 181
break point
 definition, 45

Chebyshev inequality, 36
Chernoff bound, 37
classification
 for regression, 113
 linear programming algorithm, 110
classification error
 bound by cross-entropy error, 97
 bound by squared error, 97
clustering, 13
coin classification, 9, 13
combinatorial optimization, 80
complexity
 of \(\mathcal{H} \), 26
 of \(f \), 27
computational complexity, 181
computational finance, 181
computer vision, 1
curve function, 93
convex set, 44
cost, 28
cost matrix, 29, 115
credit approval, 3, 82, 96
cross validation, 145–150
 \(V \)-fold, 150
 choosing \(\lambda \), 149
 digits data, 151
 effective number of examples, 163
 exact computation, 149
 leave-one-out, 146
 linear model, 149
 linear model, analytic, 164
 model selection, 148
 regularized, 165
 summary, 147
 unbiased, 147
 variance, 162
cross-entropy, 92
data contamination, 145, 151, 176
data mining, 15
data point, 3
data set, 3
 ghost, 188
 space of, 54
data snooping, 173–177, 181
Index

financial trading, 174
nonlinear transform, 103
normalization bias, 174
versus sampling bias, 177
decision stump, 106
design
versus learning, 9
deterministic noise, 124, 128
effect on learning, 151
regularization, 136
similarity to stochastic noise, 136
Dewey, 171
dichotomy, 42
 maximum number, 46
 perceptron, 43
table, 47
differentiable, 85
twice-, 93, 95
effective number of hypotheses, 41, 53
effective number of parameters, 52, 137, 159
Einstein, 167
ensemble learning, 181
entropy, 168
error measure, 28–30
 L_1 versus L_2, 38
classification, 28
cross-entropy, 92
 fingerprint example, 28
 logistic regression, 91
example, 3
false accept, 29, 115
false reject, 29, 115
falsifiability, 178
feasibility of learning
 Boolean example, 16
 probabilistic, 18
two main questions, 26
 visual example, 15
feature selection, 151
feature space, 100
 features, 81
 nonlinear transform, 99
feature transform, 100, 111, 116–117
final exam, 39
financial forecasting, 1
fingerprint verification, 28, 115
football scam, 170
Gaussian processes, 181
generalization, 39–59
 VC bound, 50–59
 VC dimension, 50
generalization bound
 definition, 40
 Devroye, 73
 Parrondo and Van den Broek, 73
 Rademacher penalty, 73
 relative error, 74
 VC, see VC generalization bound
generalization error
 definition, 40
global minimum, 93
gradient descent, 92–99
 algorithm, 95
 batch, 97
 initialization and termination, 95
 stochastic, 97
growth function, 41–50
 2-dimensional perceptron, 43
 bound, 46–49
 convex set, 44
 definition, 42
 in VC proof, 190
 polynomial bound, 50
 positive interval, 44
 positive ray, 43
two-dimensional perceptron, 43
handwritten digit recognition, 4, 11, 81–82, 106–107, 151
hat matrix, 87, 112
Hessian matrix, 116
Hoeffding bound, see Hoeffding Inequality
Hoeffding Inequality, 19, 19–27
 and binomial distribution, 36
 uniform version, 24
 without replacement, 192
hypothesis set, 3
 composition, 72
 concentric spheres, 69
 convex set, 44
 monotonic, 71
 polynomial, 120
 positive interval, 44

198
positive ray, 43
positive rectangles, 69
positive-negative interval, 69
positive-negative ray, 69
restricted to inputs, 42

in-sample error, 21
input space, 3
iterative learning, 7

kernel methods, 181

Lagrange multiplier, 131, 157
lasso, 161
law of large numbers, 36, 37
learning
criteria, 26, 78
feasibility, 15–18, 24–26
learning algorithm, 3
learning curve, 66–68, 140, 147
linear regression, 88
learning model
definition, 5
learning problem
summary figure, 30
learning rate, 94, 95
leave-one-out, 146
Legendre polynomials, 123, 128–129, 154, 155
likelihood, 91
linear classification, 77
linear model, 77
bias-variance, 158–159
building block, 181
cross validation, analytic, 164
optimal weight decay, 161
overlooked resource, 107
summary, 96
linear programming, 110, 111
linear regression, 82–88, 111
algorithm, 86
bias and variance, 114
for classification, 96–97, 109–110
learning curve, 88
optimal hypothesis, 111
out of sample, 87–88
out-of-sample error, 112
projection matrix, 86, 113
rank deficient, 114
using classification algorithm, 113
linearly separable, 6, 78
example, 6
local minimum, 93
logistic function, 89
logistic regression, 88–99
algorithm, 95
cross-entropy error, 92
error measure, 91–92
for classification, 96–97, 115
hard threshold, 115
initialization, 95
optimal decision theory, 115
termination, 96
loss matrix, 38

machine learning, vii, 14
maximum likelihood, 91
medical diagnosis, 1
minimum description length, 168
model selection, 141–145
choosing λ, 134, 149
cross validation, 148
experiment, 144
summary, 143
monotonic functions, 71
VC dimension, 71
movie rating, 1–3
multiclass, 81

Netflix, 1
neural network, 181
Newton’s method, 116
noise
deterministic, 124
stochastic, 124
non-falsifiability, 178
axiom, 170
picking financial traders, 170
non-separable data, 79–81
nonlinear regression, 104
nonlinear transformation, 99
normalization, 175
NP-hard, 80
objective, 28
Occam’s razor, 167–171, 181
off training set error, 37
Ω, 58
online learning, 98, 181
 definition, 12
ordinary least squares, 86
out-of-sample error, 21
outliers, 79
output space, 3
overfitting, 119–165, 171
 definition, 119
 experiment, 123, 155
 learning curves, 122

pattern recognition, 9
penalty
 hypothesis complexity, 126, 133
 model complexity, 58
perceptron, 5–8, 78–82
 definition, 5
 experiment, 34
 learning algorithm (PLA), 7
 $m_N(N)$, 70
 PLA convergence, 33
 pocket algorithm, 80
perceptron learning algorithm, 7, 77, 78, 98, 109–110
 and SGD, 98
 convergence, 33
 figure, 7, 83
PLA, see perceptron learning algorithm
pocket algorithm, 80, 97, 109
 figure, 83
poll, 19
 Truman versus Dewey, 171
polynomial transform, 104
polynomials, 120
positive interval, 44
positive ray, 43
postal scam, 170
prediction of heart attacks, 89
probability
 logistic regression, 89
 union bound, 24, 41
projection matrix, 113
pseudo-inverse, 85
 numerical stability, 86
publication bias, 173

quadratic programming, 181
random sample, 19

recommender systems, 1, 15, 181
regression, 77, 82
 logistic, 89
regularization, 126–137, 181
 E_n versus λ, 156
 augmented error, 132
 choosing λ, 134, 149
 input noise, 160
 lasso, 161
 linear model, 133
 ridge regression, 132
 soft order constraint, 128
 Tikhonov, 131, 160
 VC dimension, 137
 weight decay, 132
regularization parameter, λ, 133
reinforcement learning, 12, 181
ridge regression, 132
risk, 28
risk matrix, 38, see also cost matrix
sample complexity, 56–57
sampling bias, 171–173, 181
 versus data snooping, 177
Sauer’s Lemma, 48
search engines, 1
selection bias, 173
SGD, see stochastic gradient descent
shatter, 42
sigmoid, 90
singular value decomposition, 114
soft order constraint, 157
soft threshold, 90
spam, 4, 6
squared error, 61, 66, 84, 140
SRM, see structural risk minimization
statistics, 14
stochastic gradient descent, 97–99, 110
stochastic noise, 124
streaming data, 12
structural risk minimization, 178
superstition, 119
supervised learning
 definition, 11
support vector machines, 181
supremum, 187
SVD, see singular value decomposition
tanh, 90
target distribution, 31
target function, 3
 noisy, 30–32, 83, 87
test set, 59
Tikhonov regularizer, 131
Tikhonov smoothness penalty, 162
training examples, 4
Truman, 171

underfitting, 135
union bound, 24, 41
unlabeled data, 13, 181
unsupervised learning, 13, 181
 learning a language, 13
validation, 137–141
 cross validation, 145
 model selection, 141
 summary, 141
 validation set, 138
validation error, 138
 expectation, 138
 optimistic bias, 142
 variance, 139
validation set
 VC bound, 139, 163
Vapnik-Chervonenkis, see VC
VC dimension, 50
 d-dimensional perceptron, 52
 and number of parameters, 72
 definition, 50
 effective, 137
 intersection of hypothesis sets, 71
 monotonic functions, 71
 of composition, 72
 union of hypothesis sets, 71
VC generalization bound, 53, 78, 87, 102
 definition, 53
 proof, 187
 sketch of proof, 53
VC Inequality, 187
vending machines, 9
virtual examples, 157

weight decay, 132
 cross validation error, 149
 example, 126
 gradient descent, 156
 invariance under linear transform, 162

Z space, 99–102