
Notation
� · � event (in probability)
{· · · } set
| · | absolute value of a number, or 
ardinality (number of ele-ments) of a set, or determinant of a matrix
‖ · ‖2 square of the norm; sum of the squared 
omponents of ave
tor
⌊ · ⌋ �oor; largest integer whi
h is not larger than the argument
[a, b] the interval of real numbers from a to b
J·K evaluates to 1 if argument is true, and to 0 if it is false
∇ gradient operator, e.g., ∇Ein (gradient of Ein(w) with re-spe
t to w)
(·)−1 inverse
(·)† pseudo-inverse
(·)t transpose (
olumns be
ome rows and vi
e versa)
(

N
k

) number of ways to 
hoose k obje
ts from N distin
t obje
ts(equals N !
(N−k)!k! where ` !' is the fa
torial)

A \B the set A with the elements from set B removed
0 zero ve
tor; a 
olumn ve
tor whose 
omponents are all zeros
{1} × R

d d-dimensional Eu
lidean spa
e with an added `zeroth 
oor-dinate' �xed to 1
ǫ toleran
e in approximating a target
δ bound on the probability of ex
eeding ǫ (the approximationtoleran
e)
η learning rate (step size in iterative learning, e.g., in sto
has-ti
 gradient des
ent)
λ regularization parameter
λC regularization parameter 
orresponding to weight budget

C
Ω penalty for model 
omplexity; either a bound on general-ization error, or a regularization term
θ logisti
 fun
tion θ(s) = es/(1 + es)
Φ feature transform, z = Φ(x)
Φq Qth-order polynomial transform193



Notation
φ a 
oordinate in the feature transform Φ, zi = φi(x)
µ probability of a binary out
ome
ν fra
tion of a binary out
ome in a sample
σ2 varian
e of noise
A learning algorithmargmina(·) the value of a at whi
h the minimum of the argument isa
hieved
B an event (in probability), usually `bad' event
b the bias term in a linear 
ombination of inputs, also 
alled

w0bias the bias term in bias-varian
e de
omposition
B(N, k) maximum number of di
hotomies on N points with a breakpoint k
C bound on the size of weights in the soft order 
onstraint
d dimensionality of the input spa
e X = R

d or X = {1}×R
d

d̃ dimensionality of the transformed spa
e Z
dv
,dv
(H) VC dimension of hypothesis set H
D data set D = (x1, y1), · · · , (xN , yN ); te
hni
ally not a set,but a ve
tor of elements (xn, yn). D is often the trainingset, but sometimes split into training and validation/testsets.
Dtrain subset of D used for training when a validation or test setis used.
Dval validation set; subset of D used for validation.
E(h, f) error measure between hypothesis h and target fun
tion f
ex exponent of x in the natural base e = 2.71828 · · ·e(h(x), f(x)) pointwise version of E(h, f), e.g., (h(x) − f(x))2en leave-one-out error on example n when this nth example isex
luded in training [
ross validation℄
E[·] expe
ted value of argument
Ex[·] expe
ted value with respe
t to x

E[y|x] expe
ted value of y given x

Eaug augmented error (in-sample error plus regularization term)
Ein, Ein(h) in-sample error (training error) for hypothesis h
E
v 
ross validation error
Eout, Eout(h) out-of-sample error for hypothesis h
EDout out-of-sample error when D is used for training
Ēout expe
ted out-of-sample error
Eval validation error
Etest test error
f target fun
tion, f : X → Y
g �nal hypothesis g ∈ H sele
ted by the learning algorithm;

g : X → Y
g(D) �nal hypothesis when the training set is D
ḡ average �nal hypothesis [bias-varian
e analysis℄194



Notation
g �nal hypothesis when trained using D minus some points
g gradient, e.g., g = ∇Ein
h a hypothesis h ∈ H; h : X → Y
h̃ a hypothesis in transformed spa
e Z
H hypothesis set
HΦ hypothesis set that 
orresponds to per
eptrons in Φ-transformed spa
e
H(C) restri
ted hypothesis set by weight budget C [soft order
onstraint℄
H(x1, . . . ,xN ) di
hotomies (patterns of ±1) generated by H on the points

x1, · · · ,xN

H The hat matrix [linear regression℄
I identity matrix; square matrix whose diagonal elements are

1 and o�-diagonal elements are 0
K size of validation set
Lq qth-order Legendre polynomial
ln logarithm in base e
log2 logarithm in base 2
M number of hypotheses
mH(N) the growth fun
tion; maximum number of di
hotomies gen-erated by H on any N points
max(·, ·) maximum of the two arguments
N number of examples (size of D)
o(·) absolute value of this term is asymptoti
ally negligible 
om-pared to the argument
O(·) absolute value of this term is asymptoti
ally smaller thana 
onstant multiple of the argument
P (x) (marginal) probability or probability density of x

P (y | x) 
onditional probability or probability density of y given x

P (x, y) joint probability or probability density of x and y
P[·] probability of an event
Q order of polynomial transform
Qf 
omplexity of f (order of polynomial de�ning f)
R the set of real numbers
R

d d-dimensional Eu
lidean spa
e
s signal s = wtx =

∑

i wixi (i goes from 0 to d or 1 to ddepending on whether x has the x0 = 1 
oordinate or not)sign(·) sign fun
tion, returning +1 for positive and −1 for negative
supa(.) supremum; smallest value that is ≥ the argument for all a
T number of iterations, number of epo
hs
t iteration number or epo
h number
tanh(·) hyperboli
 tangent fun
tion; tanh(s) = (es−e−s)/(es+e−s)tra
e(·) tra
e of square matrix (sum of diagonal elements)
V number of subsets in V -fold 
ross validation (V ×K = N)
v dire
tion in gradient des
ent (not ne
essarily a unit ve
tor)195



Notation
v̂ unit ve
tor version of v [gradient des
ent℄var the varian
e term in bias-varian
e de
omposition
w weight ve
tor (
olumn ve
tor)
w̃ weight ve
tor in transformed spa
e Z
ŵ sele
ted weight ve
tor [po
ket algorithm℄
w∗ weight ve
tor that separates the data
wlin solution weight ve
tor to linear regression
wreg regularized solution to linear regression with weight de
ay
wPLA solution weight ve
tor of per
eptron learning algorithm
w0 added 
oordinate in weight ve
tor w to represent bias b
x the input x ∈ X . Often a 
olumn ve
tor x ∈ R

d or x ∈
{1} × R

d. x is used if input is s
alar.
x0 added 
oordinate to x, �xed at x0 = 1 to absorb the biasterm in linear expressions
X input spa
e whose elements are x ∈ X
X matrix whose rows are the data inputs xn [linear regression℄
XOR ex
lusive OR fun
tion (returns 1 if the number of 1's in itsinput is odd)
y the output y ∈ Y
y 
olumn ve
tor whose 
omponents are the data set outputs

yn [linear regression℄
ŷ estimate of y [linear regression℄
Y output spa
e whose elements are y ∈ Y
Z transformed input spa
e whose elements are z = Φ(x)
Z matrix whose rows are the transformed inputs zn = Φ(xn)[linear regression℄
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